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D E S C R I P T I O N  OF MASS G R O W T H  OF CRYSTALS F R O M  SOLUTIONS 

W I T H  A L L O W A N C E  F O R  T H E  D I S A P P E A R A N C E  OF CRYSTAL FACES 

D U R I N G  CRYSTAL G R O W T H  

A.  I. M o s h i n s k i i  UDC 548.01:66.065 

Mass crystallization was studied on the basis of a crystabsize distribution function for a kinetic 
law of growth of faces (when the growth rate of a crystal face does not depend on the size and 
shape of the face) and with allowance for vanishing of individual faces during crystal growth. 
It is proposed that the crystallization problem should be reduced to a system of equations that 
admit analytical solutions in some cases of practical interest. 

An approach involving the introduction of a particle-size distribution function [1-6] is often used in 
describing the behavior of polydisperse particle systems in the presence of a phase transition [the growth 
of fog drops in condensation, the reverse process of vanishing of drops due to evaporation, crystallization 
and dissolution of solid particles in a solution in the presence of supersaturation (undersaturation), etc.]. 
Knowledge of this function allows one to determine the variation in time of all quantities of applied interest: 
the number of particles, their average size and specific surface, the total volume of all particles of the solid 
phase, etc. As a rule, a certain effective size of crystals (for example, the volume average radius for crystals 
of complex shape) is taken as the size (radius). This simplifies the calculations markedly and applies to liquid 
polydisperse systems. However, there are some disadvantages in this representation of the geometry of a solid 
particle. Thus, for example, experimental observations of the course of mass crystallization showed a series of 
attendant phenomena that complicate the description of crystal growth. For example, crystal growth is often 
accompanied by fluctuations of the crystal-growth rate [5-7]. Crystals stick together, break up, and, what is 
especially important for the subject of the present work, different crystal faces grow at different characteristic 
rates, etc. [6, 7]. The latter, as is known [8, 9], leads not only to a change in the crystal shape with time but 
also to the disappearance of some crystal faces. It is dear that the conventional approach does not permit 
keeping track of the change in the crystal shape and the experimentally observed disappearance of some 
crystal faces. Usually, portions of crystals produced in experiments show a certain spread of crystal sizes 
and geometry. This certainly adversely affects the accuracy of prediction of the main characteristics of the 
process. Naturally, in connection with the aforesaid, research faces the problem of extending the conventional 
approaches (one-parameter in size) to the geometry of crystals growing in a supersaturated solution. 

The problem of the mass growth of crystals is originally formulated as a nonlinear problem since the 
rate of their growth (dissolution) of crystals depends on the characteristics of the sought quantity - -  the 
size-distribution function. Therefore, analytical solutions of the corresponding problems are obtained rather 
rarely, and any change in the formulation of the problem can complicate it appreciably. Approaches to the 
solution of such problems are described in [3-7, 10, 11]. 

A natural step in the development of the description of mass crystallization involves the use of several 
parameters to determine the shape of a crystal. This increases the dimensionality of the equations and, 
hence, complicates analysis of them [12-15]. Therefore, there has not been considerable progress in this line 
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of research. In addition, we are not aware of mathematical  simulations of the mass growth of crystals in a 
solution that  take into account the known phenomenon [8, 9] of the disappearance of crystal faces during 
growth. In this connection, the main goal of the present paper is to discuss and develop an approach to the 
description of mass crystallization in the presence of the indicated effect. 

1. F o r m u l a t i o n  of  t h e  E q u a t i o n s  of  t h e  P r o b l e m .  As a first step in this direction, we consider the 
crystallization process without  additional complications. We assume that  crystal faces grow in a kinetic regime, 
i.e., the growth rate of a particle does not depend on the particle size (it depends only on the supersaturation 
of the solution C). In the definition of supersaturation, we assume that  the equilibrium concentration C. at a 
given constant tempera ture  is subtracted from the concentration of the dissolved solid phase. This difference is 
the supersaturation of the solution. Therefore, complete elimination of supersaturation corresponds to C = 0. 
Fluctuations of the growth rate of crystals are not taken into consideration. 

It is easy to see that ,  depending on the shape of the crystal, the characteristics of the crystal (volume, 
surface area, etc.) are frequently written in a specific form. Therefore, to illustrate the general approach 
without going into un impor tan t  details, we consider a particular crystal (one-parameter family), whose cross 
section is a 2k-gon with equal and paral ld opposite sides (Fig. l a  shows a crystal of an octagonal cross section). 
In this case, there are two different sets of faces, and faces of the same set are not adjacent to one another, i.e., 
each vertex of the polygon in the cross section is formed by faces of different sets. Representatives of each set 
are denoted in Fig. la.  These are faces A and B with different growth rates (z and y are the distances from the 
center O of the crystal to  faces A and B, respectively). Figure lb  shows the crystal before the disappearance 
of face B (and related faces). A particular case where some faces disappear is a regular k-gon (Fig. lc) in the 
cross section. In addition, all crystals have the shape of a prism of height z. 

It is easy to see that  the volume of the crystal can be expressed in terms of z and y. After simple 
calculations, we have 

Q = kz 2zy - @2 + y2) cos ~o cos ~ ~< z_ ~< 1 ~r 
s i n~  ' y cos--'-~' ~ =  ~. (1.1) 

We assume that  the integer k is larger than two to eliminate the case where the crystal has the shape of a 
rectangle and hence vanishing of faces does not occur. The cases where the ratio of the parameters z and y 
reaches the limiting values 1/cos ~ and cos ~0 correspond to the degeneration of the 2k-gon to a regular k-gon. 
The motion of faces A and B and the bases of the prism in the kinetic regime is defined by the formulas 

d...~x = U(C) ,  --dY = V(C) ,  __dz = W(C) ,  (1.2) 
dt dt dt 

where U(C), V(C), and W(C) are known functions of supersaturation only, which are usually nearly 
proportional: U(C) ~. UC, V(C) ~ VC, and W(C) ~ WC for U = const, V = const, and W = const. 
After vanishing of some faces, the remaining faces begin to grow. We assume that  opposite faces (Fig. 1) 
grow by the same law and the function W(C) describes the variation in the height of the prism, i.e., the 
actual growth rate of the corresponding faces is half W. The variables z, y, and z determine all the geometric 
characteristics (in particular,  the dimensions in different directions) of the crystal. We shall call them size 
parameters. 
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The condition cos %0 ~< x/y ~< 1/cos qa for the absence of degeneration of the 2k-gon restricts ' the range 
of crystal parameters x and V in which all the 2k crystal faces grow to the interior angle (Fig. 2) in the plane 
of parameters z and V. In the region S bounded by the rays y = x cos ~ and y = z/cos ~ and the plane z = 0, 
the evolution of the crystal-size distribution function f obeys the equation 

Of Of Of Of 
0---[ + U(C) ~z + v(c) -~y + w(c)  -~z = o, (i.3) 

i.e., the function f varies only as a result of crystal growth. Here t is the time, and the physical meaning of the 
function f is that  this function, being multiplied by the element of the "volume" dxdydz, gives the number 
of crystals whose size parameters are in the ranges (z, z + dx), (y, y + dy), and (z, z + dz) for small values of 
dx, dy, and dz. 

If, during growth, the crystal "falls" on the plane y = x cos T or y = x /cos  T, the mechanism of growth 
of crystals changes because k faces disappear. For the crystal geometry considered here, it is easy to see 
[8, 9], that  the most rapidly growing fazes of the crystal disappear first of all. In this case, it is expedient 
to describe separately particular fractions of crystals (the cross-sectional shapes of a regular k-gon) on these 
planes. The corresponding distribution functions will be designated as f+  and f_ .  The evolution of these 
functions is affected not only by the crystal growth at rates U(C) or V(C) in the plane (x,y) at a rate 
W(C) along the z axis but  also by the inflow (outflow) of crystals to (from) the region S between the planes 
y = x(cos ~):1:1. To determine these flows, it is useful to derive an equation that  describes the number  of 

crystals Ns = / f ( x ,  y, z, t)dx dy dz in the region S. We integrate Eq. (1.3) over the region S. After some 
$ 

calculations we have 
OOOO 

dNs = ( v - U c o s  f �9 cos ,z, ) dx dz 
dt 

0 0 

0 0 0 0  

V c o s ~ ) -  [ J f(ycos~p,y,z,t)dydz + :s(C). (1.4) + ( U  
0 0 

Here the last term on the right side is due to nucleation. We shall discuss it later, but for now note that 
the expression (V - U cos ~)f(x, x cos ~, z, t) dx dz gives the density of the inflow (outflow) of crystals in the 
region S through the plane y = x cos ~. Similarly, the expression (U - V cos ~)f(y cos ~, y, z, t) dy dz describes 
the inflow (outflow) of crystals to (from) the region S through the plane y = x/cos ~. The terms inflow 
and outflow are used for the corresponding signs of the combinations of the growth rates (V - U cos ~) and 
(U - V cos ~2), which can also be negative. We now write equations for the distribution functions f+  and f_:  

Of+ Of+ Of+ Ot + vcc) ~ + wcc) ~ = (U(C) - y(C)lcos~)f(ylcos~,y,z,t); (1.5) 
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Of_ Of_ cgf_ 
0---[- + U(C) ~ + W(C) ~ z  = (V(C) - U(C)/ cos ~o)f(z, xl  cos ~o, z, t). (1.6) 

The physical meaning of the functions f+ and f_ is that they, being multiplied by the element dy dz and 
dx dz, give the number of crystals whose size parameters are in the ranges (y, y + dy) and (z, z + dz) for f+ 
or (x, x + dx) and (z, z + dz) for f_  for small values of dy, dz and dx, dz. 

We derive an equation that defines the evolution of supersaturation. This equation represents the 
balance of material with passage from the solution to the solid phase (crystals). In this case, it is necessary 
to take into account the contribution of the three functions f ,  f+, and f_ to the balance. For the functions 
f+ and f_ the inflow into the solid phase is described by formulas that are identical with accuracy up to 
notation. In constructing necessary relations we use the general expression for the rate of volume change of 

the material that passed to the solid phase: / f ( d Q / d t ) d q .  Here integration is extended to the entire range 
Q 

of crystal size parameters, and Q is defined by formula (1.1). Then, it is necessary to express dQ/dt in terms 
of the growth rates of faces. Having performed the indicated operation with the functions f ,  f+, and f_,  we 
arrive at the equation 

d S_C = - n {  f / ( ~ ,  y, =, t)d~ dy d={2z[(~ - y cos ~ ) v ( c )  + (y - �9 cos ~ ) u ( c ) l  
dt % 

s 
0 0 0 0  

+[2zy- (x'+ y')cos<p]W(C)}lsin<p + tan ~ [2U(C)i i xzf-(x'z't) dxdz 
0 0 

+ : , ' > " "  + i I,::+(,,:,'>',': 
0 0 0 0 

0 0 0 0  

O 0 

The coefficient fl characterizes the relation of the shape, the density, and other characteristics of the crystal 
to the geometric parameters. It serves primarily to establish a valid relation between the characteristics of 
the target component in the solution (the function C) and in the solid phase (the functions f ,  f+, and f_)  
for passage of the material from the solution into crystals. The analytical form of j3 depends on the definition 
(normalization) of the distribution function and concentration. If, following [14] we assume that  the product 
CFt (f~ is the total volume occupied by the solutior 0 gives the total mass of the dissolved material, then for 
our definition of the distribution functions, we have ~ = pk/f~, where p is the density of the solid phase. 

2. A d d i t i o n a l  Cond i t i ons .  To complete the formulation of the crystallization problem, it is necessary 
to formulate the initial and boundary conditions for system (1.3) and (1.5)-(1.7). The initial conditions 
describe the state of the system at the time t = 0 and are generally of the form 

sl,:o = cl,:o = Co, s+l,:o = s - I , : o :  so( : , : ) .  
The boundary conditions for Eqs. (1.5) and (1.6) relate the distribution function on the natural boundary of 
the range of crystal size parameters with the rate of formation of new crystals. In [12, 131, the conventional 
boundary condition of nucleation was extended to the case of dependence of the crystal volume on three 
parameters for the kinetic and diffusion laws of growth of particles in the shape of a parallelepiped. The 
conditions included the Dirac delta function 6(X). This means that the neighborhood of the coordinate origin 
was of significance to the formulation of the boundary condition related to the rate of nucleation. Following 
[12, 13], we represent the boundary conditions for Eqs. (1.5) and (1.6), which are non-one-dimensional in the 
coordinates related to the crystal sizes, in the form 
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v ( c ) f +  y=o = w ( c ) f + l z =  ~ = Jz+(c)s(y), 
(2.2) 

= w(c)f_ = 

where the rates of formation of a new phase Jz_, Jy+, Jz+, and Jz-  depend only on the supersaturation of the 
solution. Generally speaking, nuclei of the new phase have nonzero dimensions in contrast to (2.2). However, 
in mass crystallization, the typical dimensions of crystals are such that  one can ignore with high accuracy the 
dimensions of a nucleus, setting them equal to zero. This is usually done in problems of mass crystallization of 
salts from solutions [7, 10-14, etc.], whereas in related problems (see, for example, [4]), it may be important 
to take into account the size of a nucleus of a new phase. 

The definition of functions of the type Jz - ,  Jy+, Jz+, and Jz-  is an independent problem, which is 
not considered here. We note, however, that  the corresponding equations for Jx-, Jr+, Jz+, Jz-, etc., are 
similar only in form to the equations of mass crystallization, whereas they contain much smaller characteristic 
particle sizes. Furthermore, when fluctuations of the growth rate of crystals are taken into account, the 
boundary conditions should be supplemented by the requirement of a rather fast decrease in the distribution 
function with an infinite increase in the crystal size parameters x, y, and z. 

For Eq. (1.3), the boundary condition related to the rate of nucleation is more specific. Since it is 
adopted that  nuclei of the new phase have zero dimensions, this condition is related to the behavior of the 
function f in a neighborhood of the trihedral angle formed by the planes y = x(cos ~o) 4-1 and z = 0 with 
vertex at the point x = 0, y = 0, z = 0. The difference from the previous variant is also determined by the 
dimensionality of the problem in space coordinates. In the interior of the acute angle for z = const (Fig. 2), 
the problem can be reduced to the problem in the first quadrant for the auxiliary variables ~ and 77. In this 
case, the calculations can be performed in the new variables where appropriate. In particular, it is expedient 
to convert from the trihedral angle formed by three mutually perpendicular planes, as in [12, 13], to the 
trihedral angle formed by the planes y = x(cos ~0) +1 and z = 0 (x > 0, y > 0, and z > 0). The necessary 
formulas of transformation of the variables x and y have the form 

~= x--ycos~o y-xcos~o x= ~ + ~/cos~o ~cos~o + T/ (2.3) 
sin ~o ' T / =  s i n  ~ ' s i n  ~o ' Y = s i n  

The Jacobian of the transformation (2.3), which should be used in calculation of the double integral in (1.7), 
is equal to unity: a(x,  y)/O(~, 17) = 1. After transformation to the vaxiables ~ and 7, both the integrand in the 
triple integral (1.7) and the region of integration become simpler. The equation for the distribution function 
(1.3) is written in the new coordinates as 

Of Of Of Of 
4- V~(C) ~-.~ 4- V~(C) ~ 4- W(C) ~z = O. (2.4) O'-"i 

Here V~(C) = [V(C) - V(C) cos ~] /s in  ~ and V~(C) = [V(C) - U(C) cos ~p]/sin ~. Thus, it is obvious that 
the equation retained its form with definite (effective) growth rates along the axes ~ and r/. It is important 
to note that,  in contrast to Eq. (1.3), where U and V are considered positive in crystallization, the effective 
rates V~(C) and V,~(C) can also be negative. This can be called fictitious dissolution along a corresponding 
coordinate. 

If V~ > 0 and V~ > 0, the boundary conditions for Eq. (2.4), according to [12, 13], take the form 

v (clfle=0 = v (c)zl.=0 = J,~(c)6(~)6(z), 
( 2 . 5 )  

W(C)fL= ~ = J.(C)$(~)$(r/), 

where J~(C), J~(C), and Jz(C) are three "components" of nucleation [12, 13]. The calculation formulas contain 
their sum: Js(C) = J~(C) 4- J,7(C) 4- Jz(C). Note that,  like (2.5), the boundary conditions in [12, 13] lead to 
consistent results with an appropriate choice of coefficients of the equation. The fact is that ,  assuming zero 
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dimensions of nuclei of the new phase, we allow the crystal to take any permissible shape (in agreement with 
the crystal lattice) literally at once, by joining the first molecules of the dissolved material. This shape is 
determined by the laws of growth of the size parameters z, y, and z. 

The boundary conditions contain the 6 function, i.e., they have a singular character. In principle, in 
the planes ~ = 0 and r /=  0 [which correspond, according to (2.3), to y = z /cos  ~o and y = x cos ~] some other 
conditions (outside of the neighborhood of the coordinate origin) can also be imposed. However, by virtue of 
the possibility of negative coefficients at the derivatives af/a,~ and af/ar I in (2.4), these conditions should be 
formulated with allowance for this circumstance, or, more precisely, the structure of the field of characteristics 
for Eq. (2.4) and the intersections of lines on which the boundary conditions [16] are specified. Note that 
integrating Eq. (2.4) over the quadrant 0 < ~ < oo and 0 < r /<  oo with allowance for (2.3) and (2.5) and the 
above remark on the boundary conditions, we obtain formula (1.4) for the number of particles in the region 
S. It is easy to show that the variation in time of the total number of crystals described by the functions f ,  
f+, and f_,  is defined by the equation 

dNdt = dNSdt + "~-dN+ + aN_at = Js(C) + J+(C) + J_(C), (2.6) 

where Ns, N+, and N_ are the total numbers of crystals described by the functions f ,  f+,  and f_ ,  respectively 
(the integrals of these functions over crystal size parameters in the entire region of their definition); J+ = 
Jy+ + Jz+, J-  = Jx- + Jz-, and N = Ns + N+ + N_ is the total number of particles in all states. 

3. Var ian ts  o f  F o r m u l a t i o n  of  t h e  P r o b l e m .  M o m e n t a l  Equa t ions .  Before proceeding to solution 
of Eqs. (1.3) and (1.5)-(1.7) subject to conditions of the form (2.1), (2.2), and (2.5), we discuss possible versions 
of formulation of the problem in relation to the kinetics of crystal growth. Integration of Eq. (1.3) in the region 
S depends largely on the field of its characteristics. In this case, besides two degenerate cases, there are three 
typical variants. Equations (1.2) define the fields of characteristics for Eq. (1.3). It is easy to see that the 
crystal growth in the z direction (the face z cannot disappear) influences the disappearance of crystal faces 
in an indirect manner (via supersaturation, which is common for the entire mass of crystals). Therefore, the 
"main events" proceed in the same manner for all z (or t) in the plane (z, y). As a result, the formulation 
of the problem for Eq. (1.3) depends on the field of characteristics in the plane (x, y). For the slope of the 
characteristics for z = const in the plane (x, y), from (1.2) we have dy/dz = V(C)/U(O). 

The three cases of formulation of the crystallization problem are characterized by the inequalities 
V/U < cos ~, cos qa < V/U < 1/cos ~, and V/U > 1/cos qo [Fig. 3, where face A tends to disappear during 
crystal growth (a), the faces do not disappear during crystal growth (b), and face B tends to disappear during 
crystal growth (c)]. From Fig. 3 it is evident that, in the first and third cases, the same characteristic intersects 
both boundaries of the region: y = x(cos ~)• This means that the boundary condition can be set only on 
one of the boundaries (on the other boundary, the solution of the problem is calculated). In direct problems of 
the development of the process with time, boundary conditions should be specified on the curve y = z/cos 
in the first variant and on the curve y = z cos ~ in the third variant. The transfer of the solution along the 
characteristics with time is shown in Fig. 3 by arrows. 

In the second case, boundary conditions should be imposed on both curves y = x(cos ~)• Note that 
in the second case, disappearance of crystal faces does not occur. It is evident from Fig. 3 that disappearance 
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occurs on that curve y = z(cos ~o) +x at which the characteristics of Eq. (1.3) appear. The degenerate variants 
mentioned above are cases where the characteristic lines are parallel to the rays y = :c/cos ~o and y = x cos ~, 
i.e., the equalities U(C) = V(C) cos ~0 or U(C) cos ~o = V(C) hold. Note that since the field of characteristics 
depends just on the function C and via it on time, it is in principle possible that the pattern of the field of 
characteristics changes from one variant (Fig. 3) to the other with time. 

A popular approach to the solution of crystallization problems is the momental approach, which is 
unfortunately not always applicable. It can be used when a closed system of momental equations is obtained 
without any approximate methods. In a one-parameter description of the crystal size by the radius of a 
sphere whose volume is equal to the volume of the crystal when the crystal-growth rate bears a power-law 
relation to this radius, V ~ r -c' and c~ =cons t  (a rather general case that includes a number of widely used 
growth regimes), as is shown in [17], the momental approach is applicable to discrete values of the parameter 

= 3In - 1, where n is an integer, in particular, for a = 0 (the kinetic regime, as in the present paper). Note 
that in some cases one should introduce moments of fractional order. The momental approach is also suitable 
for some other (not power) laws of crystal growth, for example, the equation V ~ ao + air (no and al are 
constants). The variants listed above refer to a description of crystal growth that is "one-parameter in size." 
For crystals in the form of a parallelepiped, the possibility of using the momental approach is shown in [12]. 

We introduce the following notation for the moments of the functions f ,  f+,  and f_:  
~ o o  

Mi,Lk= f / /~i~?Jzkf(~/sin~o+rlcot%~cot~o+q/sin%z,t ,)d~drldz,  
0 0 0  

oo = ~ = ( 3 . 1 )  

M.+.=/fyizJf+(y,z,,)dydz,,,, M i : . = / / x i z i f _ ( x , z , t )  dxdz (i,j, k = O, 1, 2...). 
O 0  O 0  

We obtain equations for the moments (3.1) by multiplying the equations for the functions f ,  f+, and f_ by 
~itlizk , yizi, and xiz i, respectively, and integrating from zero to infinity over all the coordinates that describe 
the particle sizes. As a result, we have 

dMi,i,k 
dt = i~(C)Mi- l j , k  + jV~(C)Mij-I,k + kW(C)Mij ,  k-1 (i, j, k >t 1); (3.2) 

dM+ = iV(C) M+ 1,i + JW(C)Mi+-I - V~(C)sin~~176176 (i, J ~> 1); (3.3) 
dt 

dM,] 
dt = iU(C)M~-I'J + jW(C)Mi'J-1 - V~(C) sin ~o(cos qo)i#ii (i, j / >  1), (3.4) 

where 
0 0 ~  0 0 0 0  

0 0 0 6 

These equations are derived under the assumption that i, j ,  and k are larger than unity. When one (or two) 
of the subscripts are equal to zero, relations (3.2)-(3.4) are somewhat changed: 

dMo,i,t = jV~(C)Mo,j-l,t + kW(C)Moj, t-1 + V~(C)(sin~)J+lpik (j, k >t I); (3.5) 
dt 

dMi,o,k = iV~(C)Mi-l,O,k + kW(C)Mi, o,k-i + V~(C)(sinqo)i+lvik (i, k >1 1), 
dt 

dMi,j,o 
-- iV~(C)Mi-I,j,o + jV~(C)Mi,j-I,O (i, j >1 1), 

dt 
dMo,o,k 

dt = Js(C)6o,k + V~(C) sin ~o#ok + V~(C) sin qOvok (k/> 0), (3.6) 
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dt 

dMi,o,o 
dt - iV~(C)Mi-I,O,O + V,~(C)(sincp)i+lvio 

dMo,j,o _ jV.(C)Mo,.i-I,o + V~(C)(sin ~)J+lpjo 
dt 

1), 

( j )  1); 

dt = jW(C)M~ - V~(C)sin~voj (j >1 1), 

dMi+~ = iV(C)M+l ,o  -- V~(C)sinqa(cosqa)ivio (i >1 1), dM~176 dt = J+(C) - Vn(C)sin~voo; 

(3.7) 

dM~,j 
dt - jW(C)M~ - V~(C)sinTp0i (j/> i), (3.8) 

dMi:~ = iV(V)M~_l,  o - V~(C)sin~(cossa)ipio (i >1 1), dM~176 = J_(C) - V~(C)sinTp00. 
dt - dt 

Here 6o,k is the Kronecker delta. The equation for Mo,0,o is actually already derived [see (1.4)] because 
Ns = Mo,0,o. By virtue of the equalities N+ = Mo+,o and N_ = M~,o, it is easy to see that the addition of 
Eqs. (1.4), (3.7), and (3.8) leads to Eq. (2.6). Using (2.3) and the definition of the momental functions (3.1), 
we write Eq. (1.7) as 

dC 
dt = -t~[2V(C)Ml,o,1 + 2U(C)Mo,I,1 + 2W(C)Ml , l ,o / s in~  + co t~W(C) (  M2,o,o + Mo,2,o) 

+ tanT[2U(C)M{, 1 + 2V(C)M,+,I + W(C)(M~, o + M~,0)]]. (3.9) 

Combining (3.9) with Eqs. (3.5), (3.6) multiplied by the corresponding factors for the given values of the 
parameters i, j ,  and k and integrating, we obtain 

C + fl[2Ml,l,l + cot ~(M2,0,1 + M0,2,I) + tan ~(M~',I + M~I)] = const, (3.10) 

where the constant on the right side is determined by the initial conditions (2.1), which allow initial data for 
the momental equations to be obtained. Relation (3.10) is the law of conservation of mass in crystallization. 

4. Examples .  As noted above, the solution of the problem depends on the structure of the field 
of characteristics of the basic equation for the distribution function (1.3) or (2.4). The case where cossa < 
V/U < 1/cos ~ (it is called the second case) is simplest for analysis. In this case, the basic (complete) system 
of equations of the problem are Eqs. (1.4) (Ns = M0,0,0) and (3.3)-(3.9) for values of subscripts that give 
derivatives of the sought functions on the left side: C, M0,0,0, M0,0,1, M0&0, M1,0,0, M1,0,1, M0,1,1, M1,1,0, 
M2,0,0, M0,z,0, Mo,0, Mo,1, M~,0, M~,I, M2,0, /14"0+0, M0+I, M1+0, MI+I, and M~0. All the terms containing 
integrals of the function f [i.e., vii and pij for values of the subscripts i and j that correspond to Eqs. 
(3.3)-(3.8)] should be considered known (specified). 

Thus, we have a closed system of 20 ordinary differential equations subject to the initial conditions 
obtained from (2.1) after calculation of the corresponding moments. This system of equations involves no 
serious difficulties for numerical methods, although use of just one parameter as a characteristic of the crystal 
size (an equivalent radius) led to a system of only four differential equations for the kinetic regime of crystal 
growth. For the practically significant functions U(C), V(C),  W(C),  Js(C),  J+(C), and J- (C) ,  an analytical 
solution can also be obtained (see similar cases in [17]). 

To obtain an approximate analytical solution, it is possible to use the method proposed in [18]. After the 
function C(t) is found, it is not hard to obtain the distribution functions f ,  f+, and f_ from the linear equations 
(1.3) [or (2.4)], (1.5), and (1.6), containing the already known coefficients, under appropriate additional 
conditions with known coefficients. 

Variants that are more complicated for solution (the first variant V/U < cos ~ and the third variant 
V/U > 1/cos ~) are considered similarly, because they coincide with accuracy to notation. Therefore, we 
restrict ourselves to only the third variant and, for brevity, use some additional conditions in simplified form. 
The characteristic features of the equations will be retained in this case. In the third variant, one c~nnot use 
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the procedure of the second variant, because the terms in the form of integrals of the type vii and I~ij for 
definite values of the subscripts are unknown (in the second variant, they are known). Arbitrary definition 
of these terms will generally lead to contradiction in attempts to find the function f on one of the curves 
y = z(cos ~)+1 using Eqs. (1.3). Therefore, we shall proceed as follows. We shall temporarily regard C as a 
known function of time. Hence, we obtain a number of relations, which will be further correlated with one 
another. As a result, we arrive at the desired system of crystallization equations for V[U > 1/cos ~o. We first 
consider Eq. (1.3) subject to the additional conditions 

fit=o = fo(x,y ,z) ,  fi,=zcos~, = O, Js(C) = 0, (4.1) 

where the last relation (the absence of nucleation for the crystals described by the function f )  is supplemented 

the appropriate conditions (2.5) for J~ = J~ = Jz = 0. In addition, we assume that f+]t=0 = 0 and by 

J+(C) = 0. These conditions and (2.5) allow us to obtain a zero solution for the function f+ [f+(y, z, t) = 0]. 
The solution of Eq. (1.3) subject to conditions (4.1) has the form 

f ( = ,  y,  z ,  t)  = fo[= - A=(t), y - A~(t),  z - A z ( t ) ] H [ z  - A = ( t ) ] H [ y  - A ~ ( t ) ] H [ z  - A=(t)] ,  

1, z/> 0, (4.2) 
H ( z )  = O, z < O, 

as is easily verified by direct check. Here (x, y, z) E S, H(z) is the Heaviside function, and the functions Az, 
Ay, and A,, which define the characteristic of Eq. (1.3) that issues from the coordinate origin, satisfy the 
relations 

dA~ 
= U(C), ~ = V(C), ~ "  = W(C), ~=[,=o = ~[,--0 = ~'1,=0 = 0. (4.3) 

dt dt dt 

The additional conditions for Eq. (1.6) are taken in full form from (2.1) and (2.2). With allowance for (4.2), 
Eq. (1.6) takes the form 

o t  + u ( c )  - -  + w ( c )  o f _  ~ " o--7 = - t a n  ~ v ( C ) f o [ x  - ~ , ( t ) ,  ~ /  cos  

-~y(t), z - Az(t)lH[x - A,(t)IH[x/cos ~o - 3~y(t)]H[z- )~z(t)]. (4.4) 

A solution of (4.4) can be obtained using a Laplace transform over the variables z and z. After some 
manipulations for the function f_ ,  we obtain 

f_ ix ,  z, t) -- f o [ z  - A,(t), z - A , ( t ) ] H [ z  - A,(t)]H[z - A,(t)] 

t 

+ ] J - [ C ( ( ) 1 6 [ z  - A=(t)  + A , ( ( ) 1 6 [ z  - ~z(t) + A~(()] d{ 
0 

i 

tan ~ [ vdc(r - ~=(t), [~ + .x=(() - ~=(t)]/ COS ~o 

0 

- Au((),z - )~z(t)}H[x - )~x(t)]H{[x + A~(() - ~z(t)]/cos ~o - Ay(()}H[z - Az(t)]. (4.5) 

We calculate moments of the function f_  that are necessary for Eq. (1.7) or (3.9): 

o o o o  t 

0 0 0 

f i i l -  + + tan~ ! 

0 0 O 

x [z + Az(t)lJfo[x + cos ~oAy(() - A:((), x/cos  % z] dx dz. (4.6) 
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In the derivation of (4.6), we used the inequality Ay > A,/cos ~, which follows from (4.3), and the inequality 
V(C) > U(C)/cos ~ (the third case). For the necessary concrete values of i and j (we need the moments M~, 1 
and M~,0) , formulas (4.6) become somewhat simpler. The formula for the moments of the function f MI,0,1, 
Moj3,  M1A,0, Mz,0,0, and M0,2,0, which are necessary for Eq. (3.9), are expressed by simple quadratures, but, 
in the general case, the functional dependence of the corresponding moments on the variables Az, Ay, and Az 
can be rather complicated. For brevity, we give only the formula for M1,0,1: 

M,,o,, = / / /~zfo[~/sin~ + r/cot ~ -  A. ( ' ) ,~  cot ~2 + r//sin qo - Ay(t), z A~(t)] 
0 0 0 

x H [~/sin qo + 7/cot ~o - Az(t)]H[~ cot ~o + r//sin qo - ,k,(t)]H[z - ,k,(t)] d~ dr I dz. (4.7) 

It can be somewhat rearranged by refining the region of integration that follows from the properties of the 
Heaviside function. 

With allowance for (4.6), (4.7), etc., and the equalities M~I -- M~0 = 0, relations (3.9) and (4.3) form 
a closed system of equations. Solving this system, i.e., finding the functions C(t), ,~z(t), Ay(t), and Az(t), we 
obtain a solution of the crystallization problem because the distribution functions f and f_ will be expressed 
explicitly in terms of the functions C(t), A~(t), Ay(t), and Az(t). Note that this system can be decreased in 
order if we first seek a solution in the form C = C(A~), Ay = Ay(A~), and Az = Az(A~) and then relate the 
parameter A~ with t ime using the quadrature 

Xx 

= ] u - l [ c ( r  de. t 
0 

A further solution in this case can be performed for concrete functions fo(x, y,z) and J-(C). For 
illustration, we restrict ourselves to one example, using the following expressions for the necessary functions: 
f0(z, y, z) = Ns6(z - z0)$(y - yo)f(z - zo), J_(C) = 0,. and fo (x ,  z) = g_$(z  - Xo)5(zzff). Here z0, y0, 
z0, xff, and zff are certain constants. Any distribution function of a similar (S-shaped) form will be called 
a monodisperse function. The functions U(C), V(C), and W(C) are assumed to be linear: V(C) = UC, 
V(C) = VC, and W(C) = WC at U, V, and W = const. It should be noted that this is of great practical 
significance because theoretical considerations and experimental data show that the growth rate is proportional 
(or nearly proportional) to C. This allows one to use a relation of the type V = AC for each crystal face 
and (if necessary) to calculate the correction by the perturbation method [19]. The functional relations of the 
growth rate of crystals with supersaturation and the differences of them from the law V = AC (A = const) 
are discussed using experimental facts, for example, in [8, 20]. 

Calculation of integral (4.6) leads to the expression 

Mi- ~ = N_[x~ + Az(t)li[zo + Az(t)] / + Ns[xo + )~,(t)li[zo + Az(t)]JH Az(t) - costa 

where ~0 = xo/sin ~ - y0 cot ~ [see (2.3)]. In deriving (4.8), we used the equality 

Ax(t) = A,(t) = Az(t) (4.9) 
U V W '  

which follows from relations (4.3). Then, we obtain integral (4.7) and similar integrals. Substituting the 
result and expressions (4.8) into (3.9), we arrive at the following equation for describing the evolution of 
supersaturation: 

-I dC 
-(t~C) --~ = Ns{2(zo + Az)[V((0 + A~) + U(r/0 + A.)] + Wcot  ~[(~o + A~)2 + (~o + A.) 2 

+ 2(~0 + A~)(r/0 + An)/cos ~o1} + tan ~o{N_i2U(zff + Az)(z o + A,) + W(x o + Az) 21 

+ Ns[2V(xo + A,)(z0 + A,) + W(xo + X~)2]H[A,(t)(V/U - 1 /cos~)  - ~o]}. (4.10) 
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Here $, = (A~ - Ay cosqo)/sin qa and A n = (Ay - Az cosqa)/sin qo. It is obvious from (4.9) that  Eq. (4.10) can 
be written as 

-(13C)-tdC/dt = Ao + A,Az + A2A2z + (Bo + BIAx + BzA2)H[Ax(t)(V/U - 1/cos ~) -~0],  

where the constants Aj and B i (j = 0, 1, and 2) are obtained from (4.10) (for brevity they are not presented). 
Dividing the last equation by relation (4.3) for the function Ax(t) and integrating, we have the following 
relation between supersaturation and Ax: 

U(Co - C)/~ = moAx + A1A2-/2 + A2 A3 + (BoAx + BIA 2 + B2 A3) -- (BoZ + B1Z 2 + B2Z3), 

Z = Az for Az ~< A,, 
(4.11) 

Z = A, for A~ > A,. 

Here A, = ~o/[V/U - 1/cos qa]. The solution of the problem will be completed when we substi tute the cubic 
polynomial C = C(~z) from (4.11) into the quadrature (4.3) (the first equation). This quadrature relates the 
parameter Ax to time. All the remaining functions of interest, f ,  f_ ,  etc. are already expressed in terms of Ax. 

Among the distribution functions f ,  f+, and f_ in the given simple example, the monodisperse [by 
virtue of the initial condition .t0(z, y, z) = Ns6(z - zo)6(y - y0)6(z - z0) and relation (4.2)] fraction described 
by the function f is of prime interest, because it defines the growth of the most "representative" crystals 
with all faces. The physical meaning of the parameter A, is that  for Az = A, this fraction reaches the 
boundaries of the region y = z / cos  qo, where some faces of the crystal disappear. The process continues up 
to complete elimination of supersaturation (C = 0). The monotonic character of relation (4.11) shows that 
supersaturation necessarily reaches zero at the point Az = A/~. If A, < Ak, during evolution the monodisperse 
fraction reaches a state with vanishing faces and then crystals with a cross section in the form of a regular 
k-gon will grow [here the fraction described by the function f_  (4.5) is also present]. If A, > Ak, crystallization 
ceases without reaching the  boundary of the region y = z/cos ~. Naturally, in more complicated cases (under 
general additional conditions) analysis is more difficult to perform, although the main features of analysis are 
similar to a certain extent  to the example considered above, and the physical meaning of some relations can 
he interpreted geometrically using the characteristics of Eq. (1.3) in the plane (z, y). 

In conclusion, we make a few remarks. The determination of the growth rate of crystal faces is a separate 
problem, whose numerous aspects are topical at present [7, 8, 21]. The fact is that  several mechanisms of crystal 
growth were substantiated theoretically, for example, ``thermodynamic theories," "dislocation theories," etc. 
[7-9, 21]. It is also known [8, 21] that  the growth rate of a face is markedly influenced by impurities. 
Furthermore, the same substance ``acts" differently on different faces of the same crystal. Therefore, in practice, 
using a law for the growth rates of faces, one usually determines to which mechanism of crystal growth 
experimental data fit best of all. Then, one chooses coefficients in theoretical models, seeking agreement 
with experiment, and simultaneously takes into account "imperfections" of the course of the process that  
are difficult to control. Both theory and experiment [21] lead to different growth rates of different faces of 
crystals. In some cases, the difference in growth rate between faces can be very considerable. Thus, Linnikov 
[22] established that  the growth rates of two types of faces of calcium sulfate (gypsum) crystals (in meters 
per second) differ by about  two orders of magnitude and are defined by the formulas 

V] = 67,982(C - C , )  2 exp r[_ (61.147 • 19.031) �9 I03 I' 
RT j L 

o 2 [ (15.40 .3.56) :@31 �89 ~ 29,424 (RT)21n2(O/O,) exp I -  (RT)21n(O/O.) J' 

which were obtained using the procedure described above. 
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